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Acoustic behavior of ordered droplets in a liquid: A phase space approach

A. L. Riveral* M. R. Palomind® M. de Icaz& M. Lozada-Cassoliand V. M. Castaffo'
1Programa de Ingenieria Molecular, Instituto Mexicano del Petréleo, Lazaro Cardenas # 152, 07739 México, D.F., México
%Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Auténoma de México, Apartado Postal 1-1010,
76000 Querétaro, Querétaro, México
(Received 23 January 2004; revised manuscript received 7 July 2004; published 10 Margh 2005

The transmission of an acoustical signal through a spatial arrangement consisting of a bidimensional crystal
of droplets(liquid spheresimmersed into another liquid is analyzed. As a first approximation, the paraxial case
is solved by considering a set of acoustical lenses which allow us to model the effect of each droplet on the
signal. An expression for the Wigner distribution function that lets us evaluate the corresponding image,
diffraction pattern, and even the output signal of any given paraxial input signal to that crystalline substrate is
obtained, with particular emphasis on the case of an incoming plane wave. To solve the nonparaxial situation,
a generalization of the concept of focal distance interpreting every sphere as a superposition of concentric rings
of different radius, which permits us to find a general expression for the Wigner distribution function is
proposed.
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[. INTRODUCTION which is represented by a time delay in the received signal, a
] ) ] _horizontal tomographic bidimensional image is reconstructed
Wave propagation, particularly acoustic propagationfrom the received projections. Integration of the depth-

through a media, is a broad and interdisciplinary field ofdependent sequence of cross-sectional reconstructed images
research, in which many open questions that are scientificallgrovides a complete three-dimensional overview of the in-
sound and technologically important remain to be answeregpected terrain.
[1-4]. Photonic crystal$8] are made of periodically modulated
Among the numerous technological applications of acouseielectric materials, and most sonic crysti#$ are made up
tic propagation is how a surface that deflects radio waves ief materials with a periodic variation of material composi-
influenced by the dielectric constant of the material, whichtions. It has been suggested that sonic crystals could be used
can be in turn affected by the water content of a materialas sound shields and acoustic filtgt§-15. These applica-
This has been used to locate water within walls through afions mostly rely on the existence of sonic band gaps, a phe-
acoustical signaf5]. With the same logic it is possible to nomenon discovered in a sculpture by Eusebio Sempere in
detect oil reservoirs and/or to asses the water content in tHdadrid [10] [sounds passing through the structure of an ar-
reservoir. Another area of growing interest is to developfangement of polished tubes were altered, some frequencies
more reliable exploration techniques based on sound wave¥ Sound became more domingmtere reinforcegland oth-
that can be used to locate land mines or small, buried objecf)S €SS sdwere attenuatedl Such band gaps were first

for archaeological exploratiof6]. This method is similar to observed in crystals where the arrangement of the atomic

. e - . lattice permits only certain wavelengths of electromagnetic
those used in seismic exploration, where an explosive char gnergy to pass. Researchers have constructed synthetic “crys-
is detonated and the reflected sound waves are registered

an array of receivers using a much higher frequefia. s” that can filter and channel certain wavelengths of light
"’ by creating photonic band gaps6]. Audible sound, with its
with a much greater resolutipf6]. The imaging system in- y g p ! gapEs]. Audi und, with 1

. longer wavelengths, responds in the same way to larger
corporates a single-element source transducer and a rece“’s‘?Fuctures[lO]. The experimental analysis of the acoustic

array, which are moved together along a linear path to collecf., \smission of a two-dimensional periodic array of rigid

data. To produce a three-dimensional image of an undefsyjinders in ajr with two different geometrical configura-

ground section, nondestructive acoustic tomography tectyyno- qqiare and trianguldll]. Structures creating “deaf
nigues[?] wprk lluminating the undergr_ound area of interest bands” could be used by architects to design screen out or
with acoustic plane waves of frequencies 200_3_000 HZ. FOfiter noise. These kind of structures were constructed by
each transmitted pulse, the reflected-refracted signals are rShcient peoples, the best known example being the Mayan
ceived by a linear array of acoustic sensors located at a di?)'yramid of Kukullkan at Chichen Itza. in Mexico's Yucatan
metrically opposite point from the acoustic source line arrayygqion The odd “chirped” echo resounds from the pyramid's
For a stratified underground medium and for a given depthgiaircases in response to hand claps of people standing near
its basd 17] due to the spatially periodic design of the stone
staircases that records the call of the Maya’s sacred bird, the
*Currently at Centro de Fisica Aplicada y Tecnologia Avanzadagquetzal. Moreover, sonic crystals may also be used to build
Universidad Nacional Auténoma de México. Electronic addressacoustic lenses to converge the acoustic waves. A necessary
analeonor@fata.unam.mx condition to be satisfied for constructing an acoustic lens is
"Electronic address: meneses@servidor.unam.mx that the acoustic impedance contrast between the sonic crys-
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tal and the air should not be large; otherwise, acoustic waves

will be mostly reflected. Once this condition is satisfied, th.e L A N N B
on whther the sound speed n the sonic cysial & smalkeror ~ © © © © © © © ©
o1 this ens system bult by Corvera and co-woHarS was o N O ¢
Fon on the Joouking of acoLsic waves by the sonc ayals  © © @ ©—0—0—0—0
ometer and an acoustc convergont I4aS]. 1 has been  © © © © @ © © o
Zrl]g\l/lvt; t()ﬁca}totgje.SisnhgeTpe ofthe-crystal p.)Iaysacruma? role on the © © &
fon in the inerfaces of Sructures hat model e Earinerr, ~© © © © © © © ©
a problem that shares a number of common properties with © © © © © © ©

other important topics in physics, such as electron transport
in mesoscopic systems and localization of photphkas
well as phonong3] in random media. Besides, analogies FIC. 1._Crysta||ine acou;tical substrate consisting of lenses in
between the classical and quantum problems may lead t§€ net pointsy=(k.a ksa) with a the net parameter.

cross fertilization 20].

Another very powerful technigue is to consider wavetal of droplets(liquid spheresimmersed in a different liquid.
propagation in phase space through the Wigner distributioffo solve it, we will use a phase space approach via the WDF
function (WDF). The WDF was invented by Wign¢R1] to  considering that the effect of the system over the signal can
study the quantum corrections to the classical behavior dfe modeled by the transfer function. As a first approximation
certain statistical systems described by the Boltzmann forwe consider a paraxial signal passing through the substrate
mula. From that pioneering work on the phase space repreand we assume that each sphere modifies the signal as a lens.
sentation, the WDF has proved to be a very effective tooMe obtain an expression for the WDF that allows us to
applied to many branches of phys[@2—26, in particular to  evaluate the image, diffraction pattern, and even the output
signal analysi§27-3Q and more specifically to acoustical signal of any given paraxial input signal across the crystal-
signals(sound waves[31-3§ where it can be used to char- line substrate; in particular, we consider the case of a plane-
acterize materialg39—43. In materials science, this charac- wave input. To show that this expression corresponds to the
terization is relevant if properties of important engineeringknown diffraction pattern, we analyze a bidimensional
materials like asphaltenes, polymers, etc., are to be detesquare network and the continuous acoustical substrate—i.e.,
mined[44-4§. with a cell parameter small compared to the wavelength of

Here, we focus on acoustical applications, in particular orthe input signal. We study the nonparaxial case proposing a
the ultrasonic characterization of materials through the transggeneralization of the concept of focal distance that allows us
fer function of a bidimensional material. The characterizationto interpret every sphere as a superposition of different con-
of materials is done analyzing the transmission of an acoussentric rings of various radius and then replacing each ring
tically known signal through the medium. This is a very by an acoustical lens. With this supposition, we get a general
complicated problem that has not been solved in general iexpression for the WDF.
spite of its enormous technological and scientific importance. The paper is organized as follows: Section Il presents the
Some approaches to solve it have been tried; in particulatheory used in this work: the WDESec. Il A), the transfer
acoustic-wave propagation in waveguide structures was prdunction, and the so-called multislice meth@gec. Il B. In
viously studied through the WDF in the paraxial limit Sec. Ill as a first approximation we study the modification of
[34,35. This approach leads to a ray-tracing-type algorithma paraxial signal by the substrate obtaining an expression for
fast and easy to implement, and even anisotropies in ththe WDF; in particular, we consider the case of a plane-wave
surface of the solid could be modelg2b|. In this paper, we input. In Sec. IV we study the nonparaxial case through a
will start a series of works trying to analyze the transmissiongeneralization of the concept of focal distance getting a gen-
of acoustical signals through the WDF. As a starting pointeral expression for the WDF. Section V gathers the conclu-
we will consider a very simplified medium that consists of asions of this paper.
bidimensional square net of liquid spherical droplets im-
mersed in another liquid. We choose liquids to deal only with Il. THEORY
longitudinal waves and a bidimensional crystal due to is
symmetry properties that simplified calculations. Our treat- Our interest is the transmission of an acoustical signal
ment deals with a very simplified model for acoustical prob-through a medium with the aim of making a characterization
lems, but it extends the WDF to the nonparaxial case and iof that media. This is a very complicated problem that we
stands the grounds for the analysis of a more realistic systemill attack considering a very simplified media that consist
in a future work. of a bidimensional square network of liquid spherical drop-

Thus, our problem is the transmission of an acousticalets immersed in another liquigsee Fig. 1 To solve it, we
signal through a substrate consisting of a bidimensional cryswill use a phase space approach via the WDF considering
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that the effect of the system over the signal can be modeleffom the normalization condition via the next inversion theo-
by the transfer function. To understand this treatment we wilkrem [30]:
start in this section making a brief review of this subject.

W)= f dpWa(a/2,p)exiip -q).  (5)

A. Wigner distribution function v*(0) 27
In a two-dimensional medium we denote the coordinates Moreover,|Wy(q,p)|<1/(2m), and it can take negative
by q and the canonically conjugate momentum jpyThe  Vvalues[47]; therefore, one cannot interpret the WDF as a

Wigner distribution functionWy(q,p) of the functionw(q)  classical probability function in phase spa@s]. In fact,

is defined by[21] Wy (q,p) is strictly positive only for Gaussian wave func-
tions[51,52
W@(q,p)zifdr‘P* <q_1r>e—i[p-r]q/<q+1'r> W 1/4 [q-q ]2
21 2 2 F(q)E<—12) ex ——O+ipo'q , (6)
. 1 1 m Wo) 2w
= f dr\If(p + §r>e“[q'r]‘1’* (p - Er) wherew, is a complex numbem,=w; +iw,,w; >0, which

determines the width of the Gaussiap,is a real vector that
(1) gives the spatial center of the distribution, gnglgives the

~ ) momentum center. In this case, the WDF is also Gaussian
whereW denotes the Fourier transform @f, = the complex [51]:

conjugate, and the integrals are taken fror te « (this is

the case in all the paper, unless otherwise sjated 1 [g-00l® [Wol?
Wp(q,p):;ex —TO—TO[D—Do]Z
1. Some properties of the Wigner distribution » ! !
W.
The complete symmetry betweenand p in the former X exp{—z(q -qo) - (p- po)}. (7)
definitions of the WDFEg. (1)] indicates that space and W1
momentum have equal weight in this descript[d7]. Due Another interesting property is that the WDF has the same

to this, the WDF can be thought as the expected value of thextension and is band limited as the function its®ifq)
parity operator aroundd,p) in phase spac@48]; i.e., the  [53]. Furthermore, all the holographic information is con-
Wigner function is proportional to the overlap #f(q) with  tained in the WDH54].
its specular image around,p), which is a measure of “how  |n general, the output Wigner function of any system is
much centered” is¥(q). Note that the WDF is a four- related to the input Wigner throudh5,56
dimensional phase space distribution function, where two di-
mensions correspond to real space and the other two to mo- W‘l’out(q’p) = Wq,m(aq +bp,cq +dp), (8
mentum(Fourien space.

For numerical calculations it is very useful to notice that
the WDF is the inverse Fourier transform of the autoconvo
lution of the signal given by the kerng21]:

W(a,r) =¥(q+3r)¥* (q-3r). ) _ ( z )
BecauseVi(q,r) is Hermitian [20(q,r)=20* (q,-r)], the RCT L PP ©

WDEF is real[47].
To recover either the imad&(q)|? or the diffraction pat-

wherea, b, ¢, andd are parameters which depend on the
specific system under study. As an example, a signal of wave
‘numberk traveling through the optical axis a distarcéer-
pendicular to the coordinates axis definedd)ychanges as

for a lens of focal lengtH, we have

tern |W(p)[2 we must perform a simple projection of the K
WDF| [2(%):| P pie prel Wy, (0,p) = qum(q,;q + p); (10)
) and to obtain a Fourier transform, we use
[W(q)|°= | dpWy(q,p), €)
Wy (,p) =Wy, (=p.0). (11
|ﬁ;(p)|2:f dqWy (q,p). (4) 2. Wigner distribution for a plane-wave input

To show the simplicity of calculation through the WDF in

If the signal or image of interest is nonstationary, the WDFa useful problem we find the output signal of a system con-
gives the local spectrum centered mtas a function of sisting of a lens when the input signal is a plane wayg,
the location[49]. Thus, the total energy o¥(q) can be ob- given by
tained from integration of\Vy(q,p) over the entire phase .
space[50]. g v(a.p) P gin(a) = Aexp{-ikoz}, (12

The original functionW(q) can be recovered from the whereA is the wave amplitude and, the wave vectoftthis
Wigner distribution up to a constant that can be obtainedignal can be optical or acoustitaln this case the WDF is
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obtained substituting the input signfiEq. (12)] into the  systemh(q,,s) depends only on the differencg—s and
WDF definition[Eq. (1)]:

W, (9,p) =AA* 5(p). (13 92(a) = ga(q)®h(q) = f dsga(s)h(az - 9),

If this initial plane wave crosses a lens, we can use(EQ). . .
to find the WDF of the outcoming wave just after the borderWher.e® denotes the convolution operator. Applying the con-
of the lens: volution theorem we havgs8]
Ko Ko GZ(p) = Gl(p) . 7—(p)!
Wq(@.p) =Wy, | 0.7 +p | =AA* 5 T +p . (14)
whereG,(p) and G,(p) are the Fourier transforms af(q)

Now, we need to propagate this outcoming wave a distanc@nd d;(q), respectively. The “transfer functior(p) is the
Az (the separation between the border of the lens and thEourier transform of the response to the impuigg). Then,

detectoy, using Eq.(9): any linear system with spatial invariance can be described by
A A convolutions or through products of their Fourier transforms.
z K z ic i ) i i sin-
W, (a,p) = Wg|<q - _p,p) = AA* 5<—°q + {1 _ —]p) ' This |mpulse response appro_ach is commonly used in sig
out Ko f f nal analysi§28-30. The multislice method was introduced

(15) in transmission electron microscopy to find the transfer func-
_ ' ' . tion of a given sampl¢55]. It basically consists in decom-
With the aid of the inversion theorem, E(p), the output  posing the sample into a finite sum of layéstices of small

signal at the poin after crossing a lens results in width Az To solve the problem of the total transfer function
i we need only to determine the transfer function of each slice
Toul(Q) = A exp) - —°q2 , (16) and consider that the output signal of one layer is the input of
2(f-Az) the next one and so on.
where the output amplitude id=AA*/ [ng;ut(o)]_ The transfer function of one slice is the superposition of

the transmission of the wave of wavelenghv 2/ kg

The traditional calculation of the output of a lens system ) o
b y through a medidlens of refractive indexz [30,55,58,

[57] gives the same result as E{.6) but after longer and
more complicate calculations than the ones shown here. Tia(@) = explikgn(q)AZ,

B. Transfer function and propagation through the layer’s widfz,
Any system will transform an input signal originated in _ _ikAz ,

the “object plane” into an output signal detected in the “im- TaAa) = Tm(q)ex 2 q

age plane.” As an example of a “system” we can think of a

s_et_of Ien_ses, or a crystal, or as we_wil_l solve in_ this paper a = exp — iKO_AZ[qz_ 2011 (17)

bidimensional square network of liquid spherical droplets 2

immersed into another liquid. The system can be viewed as a o ]
“black box” (called thetransfer function that transforms in- T he multislice method supposes that the acoustical substrates

put functions(from the signal in the object planinto output ~ &ré characterized by different transfer functidf, which

functions(signal in the image plane depend on the material composition and of its structure
For linear systems, any input signgl can be decom- through its refractive index. .

posed into a linear combination of pulses, so the output sig- 1 he advantage of the multislice method is that each trans-

nal will be the linear combination of the effect of the systemformation can be represented by a matrix and the problem of

over each individual pulse. The decomposition can be don8nding the output signal of any system is reduce to simple

by using the frequency spectra of the signal obtained by Foymatrix multiplication[55] instead of the complicated convo-
rier transform or via Dirads's or plane waves or Gaussians, 'Utions used it traditionally57].

etc.
The effect of the system over the input siggalis I1l. PARAXIAL ANALYSIS OF THE ACOUSTICAL
SUBSTRATE
gz(q)=f dsg,(9h(q2:9), We consider a bidimensional square network of liquid
) o spherical droplets immersed into another lig(see Fig. 1
where the response to the impulse is given by We will suppose that the effect of the spherical drops over a
h(d,S) = £{8(qy - 9} signal can be approximated by acoustical lenses. The use of

acoustical lenses was also used by Gupta and1¥8 to
with the operatot’ representing the effect of the system. make a theoretical description of the experimental observa-
A system is calledspatially invariantwhen a translation tions reported by Cerveret al. [18].
of the source point in the object plane produces a translation The transfer function of one spherical droplet in the posi-
of its image in the image plaf&0]. For a spatially invariant tion gy is given by
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i Ko 5 pattern[Eq. (4)], and even the output signitg. (5)] of any
7.(a;q¢) =7.(q)exp) - E[q —al°(- (18)  given input signal that crosses the crystalline substrate.
The transfer function associated with this layer of width A. Plane wave as an input signal

can be written using the superposition principle as Under the paraxial approximation, it is a good supposition

Ao . to consider that the input signal is a plane wakeg. (12)];
7(9:42) =2 7L(g; a0, (19 then, the WDF at the output of the acoustical substrate is

obtained by substitution of Eq13) into Eq. (20):
where the sum is over all the spheres inside the layer.

To obtain the WDF of/7 we first evaluate the autoconvo- — AA% _kor o0
lution of this transfer functiohEqg. (2)] using Eqs.(18) and ol @ P) = AA 2 exp ~izlq-ad }

(19
. Ko 2
1 1 XeXp{l—[q-qd}
Wr(q.r) :TT(q +5r)7?(q ‘?) 2
Az K q+d
1 1 o Xexp{—lTp-[qk—qd}é(f[q—%]
=T\ a+Zr |7 {a-r Jexp) - —°r -q
2 2 f
- [
i K :
X2 exp{—z—f‘)([q-qk]z-[q-ql]z)} f
kI From the Wigner distribution function of the output sig-
ik nal, Eqg.(21), we can obtain the image by simply taking the
xexp) T - (0 + ay) momentum marginal, Eq3):
and after we obtain the inverse Fourier transform of this 2 Apw _ ko 2_ 2
kernel to get the WDF [Goud @) = AA E exp) ~i2(a-ad*~[a-ql )}
i K
Wz(q,p) = 2 exp) - 2—:([(1 -’ -[a- Ch]z)} f dp exp{— i—p - (O— q|)}
k|
Ko gkt a Ko g+ Az )
X 2lgq-+— X8| 2la-——|+|1-=—"|p).
Wﬁ(q’[“f(q 2 )D <f[q 2 ]{ f}p

with Due to the properties of thé function[58], this expression

reduces to the evaluation of the integrand in

1 1 1) .
Wr (a, p)— fdr?]_(q+ )71<q_§r>e_.r.p_

p=- 2(f A )( q-dk=a);
This result corresponds to the WDF just after the bubble
plane. Now we need to propagate it through a distahze thus,
using Eq.(9):
[Gou @)= AA* X exp) —i " —[a-q’
2 k (f AZ)
Wy (a,p) = E exp) - I—[q aul
X 2 22
Kor Az ) eXp{ 2t azld -l } 22
xexp) io.la - al” rexp) —i=p - (A —a)
Similarly, to obtain the diffraction pattern we only need to
Az Az evaluate the coordinate marginal, Ed), of the WDF, Eq.
XWr 0= —p 1- TP (21), which due to the properties of thi&function reduces to
the evaluation of the integrand in
K gk +q
*To{q‘—z ]) (20 _acta_(f-az
a= 2 K P,
As we can see, the effect of the acoustical substrate over the °
signal will produce, as a WDF output, a modification of theyielding to
input WDF [last term in Eq.(20)] by products of Gaussians 2 s )
for each dropleffirst and second terms in E¢20)] and [GouP)[2=AA* X exp{—ip - (g —a)}. (23
interference fringesthird term. kil
This general expression for the output WIDEq. (20)] To find the output function we apply to E1) the in-

will let us evaluate the imagéusing Eq.(3)], diffraction  version theorem, Eq5):
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 Kgd? [ , .4 ]}
dp ex —|— 2= AA* exp) —i————| k?-2= -k
Goul @) = 5 gout(O) - f p p{ p- (k- ql)} [Gou( @] kEk 2 - 42 .
2 2
_iko[|9_ _19_ 2_o9
Xexp{ I2f<{ qk} [2 q,] )+|p q} XE ex 2(f—A){I 2a I”
X 5( {q i * q'} [1—A—Z]p), which reduces to
fl2 2 f
Once again this simply reduces due to the properties obthe [Goul(@) 1= AA* y(§> v* (§>7<X)y* (X) (28
function[58] to the evaluation of the integrand in a a/ \a a
whereq=(x,y) and
p=-_ - (@-a—a),
2 f A
(f=42 y(t) = 2 exp{-iu(n?-2nt)}, (29
which gives "
with
=AD> ex 2-
Jou @) % 2(f n 2 - a9~ qn} o -
(24) o af-a2

To show that this expression give us the usual diffractionTo show that Eq(28) produces the known diffraction pattern
pattern[57], in the next sections we will consider that the is enough to prove that the functign[Eq. (29)] has a fringe
substrate is a square net. pattern, which is indeed the case becayse a periodic
function oft with period
B. Square net substrate x 2m(f-A2)
If we have a bidimensional square network of droplets T=-= 2
. o . .. M Koa
with cell parametea, it is convenient to locate the origin of
thexy plane in the center of the net. The position of one drop ¢
in the net can be written as

Ge=ka= (kok)a, y(t+mT) =, expl—iu(n? - 2nt)}exp{2minm} = y(t),

(25
=la=(l,ly)a,
a () m=0,+1,£2,... .
wherek,, ky, Iy, andl, are integers betweenN/2 andN/2 i ) )
[the net has{N+ 1)2 dropd. To find the order of the peaks of the diffraction pattern we
After substitution of Eq.(25) into Eq. (24) we get the write the functiony as an Airy function[58] and take the
output signal limit when t goes to O:
N
Joul(0) = A ex qu I|m YO =lim > exp{—iunZexp(2i unt}
Z(f AZ) t—0 p=—N
a’ i - i wt(—
% E expl — iKO— K2 - 29 .k = lim expf2i pt(N + l)} exp{2iut(— N)}
Keky 2(f-Az) a {0 exp(2iut} - 1
KA sinut(2N + 1)]
X, e 12 26 =lim ——————==2N+1,
E X (f AZ) (28 -0 sin ut]
The diffraction pattern comes from E(®5) into Eq. (23): with N the number of liquid drops in one direction. If we
have a square crystal, the order of the diffraction pattern
H 2
[GoulP)[2=AA* S expi-iap -k} expliap -}, peaks Is2N+1)%
Kaoky Ily
(27) C. Continuous acoustical substrate

Let us analyze the image. The image is obtained by put- When the net parameter of the acoustical substrate is
ting Eq. (25 into Eq. (22), small compared to the wavelength of the input wave we can
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approximate the summations in E@®8) by integrals.
that we have

Y =2 expl-ip(n® - 2nt}

n
n=N/2
zexpiutd X, expi—iu(n-1t)3An
n=-N/2
N/2

~ exp{i,utz}f dnexp(-iu(n-1)?

-N/2

2ulm)[N2—
SN
2u

-(\2ulm)[NI2+]
ar .
\/ —e"*tZC(u)
2

whereC(u) is the Cornu integral.

If we have a very big crystdinfinite length, it is enough
to makeN—oc in the limits of the integrals.

To get the image we substitute E81) into Eq. (28):

e—i(w/Z)uzdu

, AA* 7(f - AZ)? {xz . }xz
[Goul@)]* = T C(u) ch(U) %,
Y2

XC(u){yZC(u) * } (32)
Y1 y

1

with

Xl:_‘/Z_M(mz), XZ,/L#(E_&),
T\2 a T\2 a
_‘/Z_M(mz), yzz‘/z_ﬂ<ﬂ_z>_

T\2 a T\2 a

y1=

In the case of a finite crystal, the image is given by prod

ucts of C functions, with a modulus oscillating between
maxima and minima producing light and dark fringehf-
fraction patteri

IV. NONPARAXIAL BEAM TREATMENT

PHYSICAL REVIEW E 71, 036603(2005

FIG. 2. An acoustical incident rafB in a sphere of radiug,
parallel to the optical axis, will suffer two refractions, one at the
sphere entrance iB(r;) and another at the exit i€(r;), to cross
finally the optical axis in the focal poirk(r;).

A. Nonparaxial focal distance

Traditionally[57], thefocal distance fof a lens is defined
as the distance between the center of the lens and the point
where parallel rays converge after crossing the lens. Under
the paraxial approximation, the focal distance is independent
of the angle between the rays and optical axis. Indeed, this
condition implies that paraxial rays not only make a small
angle with the optical axis, but also that they are close to this
axis.

For a given nonparaxial ray incident over a sphere, the
optical axisis the parallel line to this axis that crosses the
center of the spheresee Fig. 2. We define thdocal distance
as the distance between the sphere center and the point where
the incident ray cuts the optical axis. Thphere planeés the
perpendicular plane to the optical axis that intercepts the
sphere center playing a role like a lens. Once we have an
optical axis assigned, a parallel ray to this axis cannot cross
the sphere; then, we say that the ray has an infinite focal
distance. We will consider the focal distance as positive if the
convergence point is on the back with respect to the sense of
advance of the ray.

A beam of parallel rays with the same distancto the
optical axis has the same focal distanide). This set of
incident rays constitutes the surface of a cylinder of radjus

the center of which coincides with the optical axis of the
sphere. If we consider a set of parallel rays between two
cylinders of radiug andr +Ar, with Ar small, then all these
rays converge in the same point, at a distaficg. We can
describe this “tube” of rays as an intersection with the sphere
plane, which is the annular zone betweeandr +Ar.

Let us consider an acoustical rayB incident over a
sphere of radiuRR parallel to the optical axi¢see Fig. 2

The former solution for a bidimensional net of droplets This ray will suffer two refractions, one when it entersBn
was done supposing that each spherical droplet can bend another when it goes out @until it crosses the optical
treated as a lens and that the rays are paraxial ones; i.e., thayis in the focal pointF. The position in the optical axis of

are near to the optical ax{$7]. To solve the problem of

the pointF depends on the position of the poBitwhich can

finding the outcoming signal crossing the acoustical substratee described through the angleor through the distance to
of Fig. 1, in this section we study nonparaxial rays, proposthe axisr;. For paraxial raysr;=0 and F=F(r;) must be

ing a generalization to the concept of focal distaf®4, and
we construct the WDF using this definition.

independent of;. If we denote by, the refraction angléin
agreement with Fig. )2 the focal distance is given by
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F(ry) = R{cog 26, - 6,(r;)] + sin(26, - 6,(r))] 2 (P
Wz (a.p)=—;| drr
X cof26.(r;) - 26,1}, (33) R6Jo
where 6, and ¢, fulfill Snell’'s refraction law: X, expy - i_<Azp SOyt @[q - qk]2>
k F(r) 2
sing, ¢ :
==, (34) l Ko
sing, ¢ XEI‘, ex % Azp-q + E[q -
with ¢; and ¢, the sound velocities inside and outside the
. . Az Az
sphere, respectively, angl and 7, the corresponding refrac- xwg(q -—p, {1 - —} p
tive indexes. Ko F(r)
Equations(33) and(34) give for eaché, a focal distance Ko Qe+ G
F(6,(r;)) that lets us interpret the sphere as a superposition of + % q- o |) (37)

concentric rings of different radius. The one analyzed in Fig.

2 is the ring with incident angle in the sphete and 6,  The effect of the acoustical substrate over the signal will
+A6,. This ring behaves like a lens with a focal distanceproduce, as an output WDF, simply the product of the input

F(6,(r;)) given by Eq.(33). WDF evaluated in a transformed phase space plist term
in Eq. (37)] by products of Gaussiansexpixglq
B. Transformation of the Wigner distribution function for the —qil*/[2F(N1) and interference fringes
nonparaxial system (expfidzp-q;/ F(r)}) for each droplet summed over all the

spheres inside the substrate and integrated over all the space.

In Sec. Il A we saw that the WDF of a signal crossing ahg term #(r) takes into account the nonparaxial character
lens of focal distancé is transformed via Eq(10) followed of the medium

by free propagation from the lens until the point where we
want to calculate the acoustical fidlEq. (9)] [55,56]:
C. Plane waves through a nonparaxial system

W, (a,p) = Wg(q - pA—Z,p[l - A—Z] + k—oq) . (35 In the case of a plane-wave indiiiq. (12), then the WDF
P ko f f at the output of the acoustical substrate is obtained by sub-
stitution of Eq.(13) into Eq. (37):

This result has two approximations: rays with small tilt with
respect to the optical axis and near to it—i.e., paraxial rays. 2 (R . Az
To obtain a better approximation than the one given by Wz, (d:P) = ES . dr% rexp) - ']_-(r)P (k= qy)

Eqg. (35), let us consider a plane wave that propagates ini-

tially through the optical axisz—i.e., that satisfies the . Ko
paraxial conditions. Let us suppose that the wave insides xXex _|2]-'(r)
over a sphere of radiuR<R, and that it is effectively a

plane within a cylinder of radiuR. The part of the wave that <ol l1- Az + Ko Ot q

it is not in the annular section betwe&and R, does not Fr) P F(r) q 2 ’
have contact inside over the sphere. The part of the wave

inside the cylinder of radiuR has a focal distance given by

Eq. (33). Let us notice that when we decompose an incidenivhere F(r) is given by Eq.(33).
plane wave into rings, in agreement with the correspondent The main modification of the output WDF of an incoming
rays, then the optical paths do not coincide, losing their coplane wave crossing a nonparaxial systgy. (38)] and a
herence. Then we propose the next approximation to thgaraxial one[Eq. (21)] is that the focal distance has to be

(a-a*-[a- q|]2)}

(38)

sphere problem: modified via Eq.(33) and then integrated over all the radius
R, of each droplet, but we still have the typical interference
_ 2wt fringes characteristic of a periodic array.
Weg (@,p) = [ dr
0 WR{%
Az Az ko V. CONCLUSIONS
XWglag-p—,p|1-——|+—="q],
g<q " p[ f(r)} f(r)q)

In this paper the transmission of a signal through an
(36) acoustical substrate consisting of a bidimensional crystal of
droplets(liquid spheres embedded into another liquid was
where F(r) is given by Eq.(33). theoretically analyzed. We consider liquids to deal only with
For the bidimensional square net of the liquid sphericalongitudinal waves. At a first approximation we solve the
droplets immerse into a different liquid shown in Fig. 1; the paraxial problem considering an acoustical lens to model the
WDF will be given by[obtained in an analogous way as effect of each drop over the signal. Using the transfer func-
Eq. (20)] tion technique developed in Sec. Il B, we found a general
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expression for the Wigner distribution function of the outputanalysis similar to the one of Fresnel. To solve the non-
signal[Eq. (20)] showing that the input WDF will be modi- paraxial situation we make a generalization of the concept of
fied by products of Gaussians and interference fringes. As afocal distanc¢Eq. (33)] that allows us to interpret the sphere
example, we consider the case of a plane-wave ifggqt as a superposition of concentric rings of different radius.
(12)] obtaining from the WDHEQq. (21)]: the image[Eq.  With this new definition we rewrite the Wigner distribution
(22)], the diffraction patterfEq. (23)], and even the output function of the output signalEq. (37)]; in particular, we
signal[Eq. (24)]. Taking the specific case of a square latticeconsider the case of an incoming plane wékg. (38)]. In

we demonstrate the traditional periodicity from a diffraction addition to the basic physics behind our results, which rep-
pattern due to the spatial periodicity of the substrate. In theesent a simpler method for evaluation of the transmission of
case of a crystal with a small net parameter we can approxian acoustical signal through a medium, they can be relevant
mate the sums by integrals, letting us follow a diffractionfor producing novel acoustical and/or photonic materials.
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