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The transmission of an acoustical signal through a spatial arrangement consisting of a bidimensional crystal
of dropletssliquid spheresd immersed into another liquid is analyzed. As a first approximation, the paraxial case
is solved by considering a set of acoustical lenses which allow us to model the effect of each droplet on the
signal. An expression for the Wigner distribution function that lets us evaluate the corresponding image,
diffraction pattern, and even the output signal of any given paraxial input signal to that crystalline substrate is
obtained, with particular emphasis on the case of an incoming plane wave. To solve the nonparaxial situation,
a generalization of the concept of focal distance interpreting every sphere as a superposition of concentric rings
of different radius, which permits us to find a general expression for the Wigner distribution function is
proposed.
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I. INTRODUCTION

Wave propagation, particularly acoustic propagation
through a media, is a broad and interdisciplinary field of
research, in which many open questions that are scientifically
sound and technologically important remain to be answered
f1–4g.

Among the numerous technological applications of acous-
tic propagation is how a surface that deflects radio waves is
influenced by the dielectric constant of the material, which
can be in turn affected by the water content of a material.
This has been used to locate water within walls through an
acoustical signalf5g. With the same logic it is possible to
detect oil reservoirs and/or to asses the water content in the
reservoir. Another area of growing interest is to develop
more reliable exploration techniques based on sound waves
that can be used to locate land mines or small, buried objects
for archaeological explorationf6g. This method is similar to
those used in seismic exploration, where an explosive charge
is detonated and the reflected sound waves are registered by
an array of receivers using a much higher frequencysi.e.,
with a much greater resolutiond f6g. The imaging system in-
corporates a single-element source transducer and a receiver
array, which are moved together along a linear path to collect
data. To produce a three-dimensional image of an under-
ground section, nondestructive acoustic tomography tech-
niquesf7g work illuminating the underground area of interest
with acoustic plane waves of frequencies 200–3000 Hz. For
each transmitted pulse, the reflected-refracted signals are re-
ceived by a linear array of acoustic sensors located at a dia-
metrically opposite point from the acoustic source line array.
For a stratified underground medium and for a given depth,

which is represented by a time delay in the received signal, a
horizontal tomographic bidimensional image is reconstructed
from the received projections. Integration of the depth-
dependent sequence of cross-sectional reconstructed images
provides a complete three-dimensional overview of the in-
spected terrain.

Photonic crystalsf8g are made of periodically modulated
dielectric materials, and most sonic crystalsf9g are made up
of materials with a periodic variation of material composi-
tions. It has been suggested that sonic crystals could be used
as sound shields and acoustic filtersf10–15g. These applica-
tions mostly rely on the existence of sonic band gaps, a phe-
nomenon discovered in a sculpture by Eusebio Sempere in
Madrid f10g fsounds passing through the structure of an ar-
rangement of polished tubes were altered, some frequencies
of sound became more dominantswere reinforcedd and oth-
ers less soswere attenuateddg. Such band gaps were first
observed in crystals where the arrangement of the atomic
lattice permits only certain wavelengths of electromagnetic
energy to pass. Researchers have constructed synthetic “crys-
tals” that can filter and channel certain wavelengths of light
by creating photonic band gapsf16g. Audible sound, with its
longer wavelengths, responds in the same way to larger
structuresf10g. The experimental analysis of the acoustic
transmission of a two-dimensional periodic array of rigid
cylinders in air with two different geometrical configura-
tions: square and triangularf11g. Structures creating “deaf
bands” could be used by architects to design screen out or
filter noise. These kind of structures were constructed by
ancient peoples, the best known example being the Mayan
pyramid of Kukulkan at Chichen Itza, in Mexico’s Yucatan
region. The odd “chirped” echo resounds from the pyramid’s
staircases in response to hand claps of people standing near
its basef17g due to the spatially periodic design of the stone
staircases that records the call of the Maya’s sacred bird, the
quetzal. Moreover, sonic crystals may also be used to build
acoustic lenses to converge the acoustic waves. A necessary
condition to be satisfied for constructing an acoustic lens is
that the acoustic impedance contrast between the sonic crys-
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tal and the air should not be large; otherwise, acoustic waves
will be mostly reflected. Once this condition is satisfied, the
converging lens can be either convex or concave depending
on whether the sound speed in the sonic crystal is smaller or
greater than that in the airf18g. The theoretical explanation
of this lens system built by Cervera and co-workersf18g was
proposed by Gupta and Yef19g, making a numerical simula-
tion on the focusing of acoustic waves by the sonic crystals
in two refractive devices: namely, a Fabry-Perot interfer-
ometer and an acoustic convergent lensf19g. It has been
shown that the shape of the crystal plays a crucial role on the
quality of focusing.

Also there is enormous interest in the acoustic propaga-
tion in the interfaces of structures that model the Earth crust,
a problem that shares a number of common properties with
other important topics in physics, such as electron transport
in mesoscopic systems and localization of photonsf4g as
well as phononsf3g in random media. Besides, analogies
between the classical and quantum problems may lead to
cross fertilizationf20g.

Another very powerful technique is to consider wave
propagation in phase space through the Wigner distribution
function sWDFd. The WDF was invented by Wignerf21g to
study the quantum corrections to the classical behavior of
certain statistical systems described by the Boltzmann for-
mula. From that pioneering work on the phase space repre-
sentation, the WDF has proved to be a very effective tool
applied to many branches of physicsf22–26g, in particular to
signal analysisf27–30g and more specifically to acoustical
signalsssound wavesd f31–38g where it can be used to char-
acterize materialsf39–43g. In materials science, this charac-
terization is relevant if properties of important engineering
materials like asphaltenes, polymers, etc., are to be deter-
mined f44–46g.

Here, we focus on acoustical applications, in particular on
the ultrasonic characterization of materials through the trans-
fer function of a bidimensional material. The characterization
of materials is done analyzing the transmission of an acous-
tically known signal through the medium. This is a very
complicated problem that has not been solved in general in
spite of its enormous technological and scientific importance.
Some approaches to solve it have been tried; in particular,
acoustic-wave propagation in waveguide structures was pre-
viously studied through the WDF in the paraxial limit
f34,35g. This approach leads to a ray-tracing-type algorithm
fast and easy to implement, and even anisotropies in the
surface of the solid could be modeledf35g. In this paper, we
will start a series of works trying to analyze the transmission
of acoustical signals through the WDF. As a starting point,
we will consider a very simplified medium that consists of a
bidimensional square net of liquid spherical droplets im-
mersed in another liquid. We choose liquids to deal only with
longitudinal waves and a bidimensional crystal due to is
symmetry properties that simplified calculations. Our treat-
ment deals with a very simplified model for acoustical prob-
lems, but it extends the WDF to the nonparaxial case and it
stands the grounds for the analysis of a more realistic system
in a future work.

Thus, our problem is the transmission of an acoustical
signal through a substrate consisting of a bidimensional crys-

tal of dropletssliquid spheresd immersed in a different liquid.
To solve it, we will use a phase space approach via the WDF
considering that the effect of the system over the signal can
be modeled by the transfer function. As a first approximation
we consider a paraxial signal passing through the substrate
and we assume that each sphere modifies the signal as a lens.
We obtain an expression for the WDF that allows us to
evaluate the image, diffraction pattern, and even the output
signal of any given paraxial input signal across the crystal-
line substrate; in particular, we consider the case of a plane-
wave input. To show that this expression corresponds to the
known diffraction pattern, we analyze a bidimensional
square network and the continuous acoustical substrate—i.e.,
with a cell parameter small compared to the wavelength of
the input signal. We study the nonparaxial case proposing a
generalization of the concept of focal distance that allows us
to interpret every sphere as a superposition of different con-
centric rings of various radius and then replacing each ring
by an acoustical lens. With this supposition, we get a general
expression for the WDF.

The paper is organized as follows: Section II presents the
theory used in this work: the WDFsSec. II Ad, the transfer
function, and the so-called multislice methodsSec. II Bd. In
Sec. III as a first approximation we study the modification of
a paraxial signal by the substrate obtaining an expression for
the WDF; in particular, we consider the case of a plane-wave
input. In Sec. IV we study the nonparaxial case through a
generalization of the concept of focal distance getting a gen-
eral expression for the WDF. Section V gathers the conclu-
sions of this paper.

II. THEORY

Our interest is the transmission of an acoustical signal
through a medium with the aim of making a characterization
of that media. This is a very complicated problem that we
will attack considering a very simplified media that consist
of a bidimensional square network of liquid spherical drop-
lets immersed in another liquidssee Fig. 1d. To solve it, we
will use a phase space approach via the WDF considering

FIG. 1. Crystalline acoustical substrate consisting of lenses in
the net pointsqk=skxa,kyad with a the net parameter.
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that the effect of the system over the signal can be modeled
by the transfer function. To understand this treatment we will
start in this section making a brief review of this subject.

A. Wigner distribution function

In a two-dimensional medium we denote the coordinates
by q and the canonically conjugate momentum byp. The
Wigner distribution functionWCsq ,pd of the functionCsqd
is defined byf21g

WCsq,pd ;
1

2p
E drC * Sq −

1

2
rDe−ifp·r gCSq +

1

2
rD

=
1

2p
E dr C̃Sp +

1

2
rDe−ifq·r gC̃ * Sp −

1

2
rD ,

s1d

whereC̃ denotes the Fourier transform ofC, p the complex
conjugate, and the integrals are taken from −` to ` sthis is
the case in all the paper, unless otherwise statedd.

1. Some properties of the Wigner distribution

The complete symmetry betweenq and p in the former
definitions of the WDFfEq. s1dg indicates that space and
momentum have equal weight in this descriptionf47g. Due
to this, the WDF can be thought as the expected value of the
parity operator aroundsq ,pd in phase spacef48g; i.e., the
Wigner function is proportional to the overlap ofCsqd with
its specular image aroundsq ,pd, which is a measure of “how
much centered” isCsqd. Note that the WDF is a four-
dimensional phase space distribution function, where two di-
mensions correspond to real space and the other two to mo-
mentumsFourierd space.

For numerical calculations it is very useful to notice that
the WDF is the inverse Fourier transform of the autoconvo-
lution of the signal given by the kernelf21g:

Wsq,r d = Csq + 1
2r dC * sq − 1

2r d . s2d

BecauseWsq ,r d is Hermitian fWsq ,r d=W* sq ,−r dg, the
WDF is realf47g.

To recover either the imageuCsqdu2 or the diffraction pat-

tern uC̃spdu2 we must perform a simple projection of the
WDF f21g:

uCsqdu2 =E dpWCsq,pd, s3d

uC̃spdu2 =E dqWCsq,pd. s4d

If the signal or image of interest is nonstationary, the WDF
gives the local spectrum centered atp as a function of
the locationf49g. Thus, the total energy ofCsqd can be ob-
tained from integration ofWCsq ,pd over the entire phase
spacef50g.

The original functionCsqd can be recovered from the
Wigner distribution up to a constant that can be obtained

from the normalization condition via the next inversion theo-
rem f30g:

Csqd =
1

C * s0d
1

2p
E dpWCsq/2,pdexpsip ·qd. s5d

Moreover, uWCsq ,pduø1/s2pd, and it can take negative
values f47g; therefore, one cannot interpret the WDF as a
classical probability function in phase spacef25g. In fact,
WCsq ,pd is strictly positive only for Gaussian wave func-
tions f51,52g

Gsqd ; S w1

pfw0g2D1/4

expH−
fq − q0g2

2w0
+ ip0 ·qJ , s6d

wherew0 is a complex number,w0=w1+ iw2,w1.0, which
determines the width of the Gaussian,q0 is a real vector that
gives the spatial center of the distribution, andp0 gives the
momentum center. In this case, the WDF is also Gaussian
f51g:

WGsq,pd =
1

p
expH−

fq − q0g2

w1
−

fw0g2

w1
fp − p0g2J

3 expH2w2

w1
sq − q0d · sp − p0dJ . s7d

Another interesting property is that the WDF has the same
extension and is band limited as the function itselfCsqd
f53g. Furthermore, all the holographic information is con-
tained in the WDFf54g.

In general, the output Wigner function of any system is
related to the input Wigner throughf55,56g

WCout
sq,pd = WCin

saq + bp,cq + dpd, s8d

where a, b, c, and d are parameters which depend on the
specific system under study. As an example, a signal of wave
numberk traveling through the optical axis a distancez sper-
pendicular to the coordinates axis defined byqd changes as

WCout
sq,pd = WCin

Sq −
z

k
p,pD; s9d

for a lens of focal lengthf, we have

WCout
sq,pd = WCin

Sq,
k

f
q + pD; s10d

and to obtain a Fourier transform, we use

WCout
sq,pd = WCin

s− p,qd. s11d

2. Wigner distribution for a plane-wave input

To show the simplicity of calculation through the WDF in
a useful problem we find the output signal of a system con-
sisting of a lens when the input signal is a plane wave,gin,
given by

ginsqd = A exph− ik0zj, s12d

whereA is the wave amplitude andk0 the wave vectorsthis
signal can be optical or acousticald. In this case the WDF is
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obtained substituting the input signalfEq. s12dg into the
WDF definition fEq. s1dg:

Wgin
sq,pd = AA* dspd. s13d

If this initial plane wave crosses a lens, we can use Eq.s10d
to find the WDF of the outcoming wave just after the border
of the lens:

Wgl
sq,pd = Wgin

Sq,
k0

f
q + pD = AA* dSk0

f
q + pD . s14d

Now, we need to propagate this outcoming wave a distance
Dz sthe separation between the border of the lens and the
detectord, using Eq.s9d:

Wgout
sq,pd = Wgl

Sq −
Dz

k0
p,pD = AA* dSk0

f
q + F1 −

Dz

f
GpD .

s15d

With the aid of the inversion theorem, Eq.s5d, the output
signal at the pointz after crossing a lens results in

goutsqd = A expH−
ik0

2sf − Dzd
q2J , s16d

where the output amplitude isA=AA* / f2pgout
* s0dg.

The traditional calculation of the output of a lens system
f57g gives the same result as Eq.s16d but after longer and
more complicate calculations than the ones shown here.

B. Transfer function

Any system will transform an input signal originated in
the “object plane” into an output signal detected in the “im-
age plane.” As an example of a “system” we can think of a
set of lenses, or a crystal, or as we will solve in this paper a
bidimensional square network of liquid spherical droplets
immersed into another liquid. The system can be viewed as a
“black box” scalled thetransfer functiond that transforms in-
put functionssfrom the signal in the object planed into output
functionsssignal in the image planed.

For linear systems, any input signalg1 can be decom-
posed into a linear combination of pulses, so the output sig-
nal will be the linear combination of the effect of the system
over each individual pulse. The decomposition can be done
by using the frequency spectra of the signal obtained by Fou-
rier transform or via Diracd’s or plane waves or Gaussians,
etc.

The effect of the system over the input signalg1 is

g2sqd =E dsg1ssdhsq2,sd,

where the response to the impulse is given by

hsq2,sd = Lhdsq1 − sdj.

with the operatorL representing the effect of the system.
A system is calledspatially invariantwhen a translation

of the source point in the object plane produces a translation
of its image in the image planef30g. For a spatially invariant

systemhsq2,sd depends only on the differenceq2−s and

g2sqd = g1sqd~hsqd =E dsg1ssdhsq2 − sd,

where~ denotes the convolution operator. Applying the con-
volution theorem we havef58g

G2spd = G1spd ·Tspd,

whereG2spd and G1spd are the Fourier transforms ofg2sqd
and g1sqd, respectively. The “transfer function”Tspd is the
Fourier transform of the response to the impulsehsqd. Then,
any linear system with spatial invariance can be described by
convolutions or through products of their Fourier transforms.

This impulse-response approach is commonly used in sig-
nal analysisf28–30g. The multislice method was introduced
in transmission electron microscopy to find the transfer func-
tion of a given samplef55g. It basically consists in decom-
posing the sample into a finite sum of layerssslicesd of small
width Dz. To solve the problem of the total transfer function
we need only to determine the transfer function of each slice
and consider that the output signal of one layer is the input of
the next one and so on.

The transfer function of one slice is the superposition of
the transmission of the wave of wavelengthl=2p /k0
through a mediaslensd of refractive indexh f30,55,56g,

TMsqd = exphik0hsqdDzj,

and propagation through the layer’s widthDz,

TDzsqd = TMsqdexpH−
ik0Dz

2
q2J

= expH− i
k0Dz

2
fq2 − 2hsqdgJ . s17d

The multislice method supposes that the acoustical substrates
are characterized by different transfer functionsTM, which
depend on the material composition and of its structure
through its refractive index.

The advantage of the multislice method is that each trans-
formation can be represented by a matrix and the problem of
finding the output signal of any system is reduce to simple
matrix multiplicationf55g instead of the complicated convo-
lutions used it traditionallyf57g.

III. PARAXIAL ANALYSIS OF THE ACOUSTICAL
SUBSTRATE

We consider a bidimensional square network of liquid
spherical droplets immersed into another liquidssee Fig. 1d.
We will suppose that the effect of the spherical drops over a
signal can be approximated by acoustical lenses. The use of
acoustical lenses was also used by Gupta and Yef19g to
make a theoretical description of the experimental observa-
tions reported by Cerveraet al. f18g.

The transfer function of one spherical droplet in the posi-
tion qk is given by
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TLsq;qkd = TLsqdexpH−
ik0

2f
fq − qkg2J . s18d

The transfer function associated with this layer of widthDz
can be written using the superposition principle as

TTsq;Dzd = o
k

TLsq;qkd, s19d

where the sum is over all the spheres inside the layer.
To obtain the WDF ofTT we first evaluate the autoconvo-

lution of this transfer functionfEq. s2dg using Eqs.s18d and
s19d,

WTT
sq,r d = TTSq +

1

2
rDTT

*Sq −
1

2
rD

= TLSq +
1

2
rDTL

*Sq −
1

2
rDexpH−

ik0

f
r ·qJ

3o
k,l

expH−
ik0

2f
sfq − qkg2 − fq − qlg2dJ

3expH ik0

2f
r · sqk + qldJ ,

and after we obtain the inverse Fourier transform of this
kernel to get the WDF

WTT
sq,pd = o

k,l
expH−

ik0

2f
sfq − qkg2 − fq − qlg2dJ

3 WTL
Xq,Fp +

k0

f
Sq −

qk + ql

2
DGC ,

with

WTL
sq,pd =

1

2p
E drTLSq +

1

2
rDTL

*Sq −
1

2
rDe−ir ·p.

This result corresponds to the WDF just after the bubble
plane. Now we need to propagate it through a distanceDz
using Eq.s9d:

WTout
sq,pd = o

k,l
expH− i

k0

2f
fq − qkg2J

3expHi
k0

2f
fq − qlg2JexpH− i

Dz

f
p · sqk − qldJ

3WTL
Sq −

Dz

k0
p,F1 −

Dz

f
Gp

+
k0

f
Fq −

qk + ql

2
GD . s20d

As we can see, the effect of the acoustical substrate over the
signal will produce, as a WDF output, a modification of the
input WDF flast term in Eq.s20dg by products of Gaussians
for each dropletffirst and second terms in Eq.s20dg and
interference fringessthird termd.

This general expression for the output WDFfEq. s20dg
will let us evaluate the imagefusing Eq. s3dg, diffraction

patternfEq. s4dg, and even the output signalfEq. s5dg of any
given input signal that crosses the crystalline substrate.

A. Plane wave as an input signal

Under the paraxial approximation, it is a good supposition
to consider that the input signal is a plane wavefEq. s12dg;
then, the WDF at the output of the acoustical substrate is
obtained by substitution of Eq.s13d into Eq. s20d:

Wgout
sq,pd = AA* o

k,l
expH− i

k0

2f
fq − qkg2J

3expHi
k0

2f
fq − qlg2J

3expH− i
Dz

f
p · fqk − qlgJdSk0

f
Fq −

qk + ql

2
G

+ F1 −
Dz

f
GpD . s21d

From the Wigner distribution function of the output sig-
nal, Eq.s21d, we can obtain the image by simply taking the
momentum marginal, Eq.s3d:

fgoutsqdg2 = AA* o
k,l

expH− i
k0

2f
sfq − qkg2 − fq − qlg2dJ

3E dp expH− i
Dz

f
p · sqk − qldJ

3dSk0

f
Fq −

qk + ql

2
G + F1 −

Dz

f
GpD .

Due to the properties of thed function f58g, this expression
reduces to the evaluation of the integrand in

p = −
k0

2sf − Dzd
s2q − qk − qld;

thus,

fgoutsqdg2 = AA* o
k

expH− i
k0

2sf − Dzd
fq − qkg2J

3o
l

expHi
k0

2sf − Dzd
fq − qlg2J . s22d

Similarly, to obtain the diffraction pattern we only need to
evaluate the coordinate marginal, Eq.s4d, of the WDF, Eq.
s21d, which due to the properties of thed function reduces to
the evaluation of the integrand in

q =
qk + ql

2
− S f − Dz

k0
Dp,

yielding to

fg̃outspdf2 = AA* o
k,l

exph− ip · sqk − qldj. s23d

To find the output function we apply to Eq.s21d the in-
version theorem, Eq.s5d:
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goutsqd =
AA*

2pgout
* s0dok,l

E dp expH− i
Dz

f
p · sqk − qldJ

3 expH− i
k0

2f
SFq

2
− qkG2

− Fq

2
− qlG2D + ip ·qJ

3 dSk0

f
Fq

2
−

qk + ql

2
G + F1 −

Dz

f
GpD .

Once again this simply reduces due to the properties of thed
function f58g to the evaluation of the integrand in

p = −
k0

2sf − Dzd
sq − qk − qld,

which gives

goutsqd = Ao
k,l

expH− i
k0

2sf − Dzd
sfq − qkg2 − ql

2dJ .

s24d

To show that this expression give us the usual diffraction
patternf57g, in the next sections we will consider that the
substrate is a square net.

B. Square net substrate

If we have a bidimensional square network of droplets
with cell parametera, it is convenient to locate the origin of
thexy plane in the center of the net. The position of one drop
in the net can be written as

qk = ka = skx,kyda,
s25d

ql = la = slx,lyda,

wherekx, ky, lx, and ly are integers between −N/2 andN/2
fthe net hassN+1d2 dropsg.

After substitution of Eq.s25d into Eq. s24d we get the
output signal

goutsqd = A expH− i
k0

2sf − Dzd
q2J

3 o
kx,ky

expH− i
k0a

2

2sf − DzdFk2 − 2
q

a
·kGJ

3o
lx,ly

expHi
k0a

2

2sf − Dzd
l2J . s26d

The diffraction pattern comes from Eq.s25d into Eq. s23d:

fg̃outspdf2 = AA* o
kx,ky

exph− iap ·kjo
lx,ly

exphiap · lj.

s27d

Let us analyze the image. The image is obtained by put-
ting Eq. s25d into Eq. s22d,

fgoutsqdg2 = AA* o
kx,ky

expH− i
k0a

2

2sf − DzdFk2 − 2
q

a
·kGJ

3 o
lx,ly

expHi
k0a

2

2sf − DzdFl2 − 2
q

a
· lGJ ,

which reduces to

fgoutsqdg2 = AA* gS x

a
Dg * S x

a
DgS y

a
Dg * S y

a
D , s28d

whereq=sx,yd and

gstd ; o
n

exph− imsn2 − 2ntdj, s29d

with

m ;
k0a

2

2sf − Dzd
. s30d

To show that Eq.s28d produces the known diffraction pattern
is enough to prove that the functiong fEq. s29dg has a fringe
pattern, which is indeed the case becauseg is a periodic
function of t with period

T =
p

m
=

2psf − Dzd
k0a

2 ,

i.e.,

gst + mTd = o
n

exph− imsn2 − 2ntdjexph2pinmj = gstd,

m= 0, ± 1, ± 2, . . . .

To find the order of the peaks of the diffraction pattern we
write the functiong as an Airy functionf58g and take the
limit when t goes to 0:

lim
t→0

gstd = lim
t→0

o
n=−N

N

exph− imn2jexph2imntj

= lim
t→0

exph2imtsN + 1dj − exph2imts− Ndj
exph2imtj − 1

= lim
t→0

sinfmts2N + 1dg
sinfmtg

= 2N + 1,

with N the number of liquid drops in one direction. If we
have a square crystal, the order of the diffraction pattern
peaks iss2N+1d2.

C. Continuous acoustical substrate

When the net parametera of the acoustical substrate is
small compared to the wavelength of the input wave we can
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approximate the summations in Eq.s28d by integrals. For
that we have

gstd = o
n

exph− imsn2 − 2ntdj

= exphimt2j o
n=−N/2

n=N/2

exph− imsn − td2jDn

< exphimt2jE
−N/2

N/2

dn exph− imsn − td2j

=Î p

2m
eimt2E

−sÎ2m/pdfN/2+tg

sÎ2m/pdfN2−tg
e−isp/2du2

du

=Î p

2m
eimt2Csud3 Î2m

p
FN

2
− tG ,

−Î2m

p
FN

2
+ tG ,4 s31d

whereCsud is the Cornu integral.
If we have a very big crystalsinfinite lengthd, it is enough

to makeN→` in the limits of the integrals.
To get the image we substitute Eq.s31d into Eq. s28d:

fgoutsqdg2 =
AA* p2sf − Dzd2

k0
2a4 CsudFx2

x1
Csud * Gx2

x1

3CsudFy2

y1
Csud * Gy2

y1
, s32d

with

x1 = −Î2m

p
SN

2
+

x

a
D, x2 =Î2m

p
SN

2
−

x

a
D ,

y1 = −Î2m

p
SN

2
+

y

a
D, y2 =Î2m

p
SN

2
−

y

a
D .

In the case of a finite crystal, the image is given by prod-
ucts of C functions, with a modulus oscillating between
maxima and minima producing light and dark fringessdif-
fraction patternd.

IV. NONPARAXIAL BEAM TREATMENT

The former solution for a bidimensional net of droplets
was done supposing that each spherical droplet can be
treated as a lens and that the rays are paraxial ones; i.e., they
are near to the optical axisf57g. To solve the problem of
finding the outcoming signal crossing the acoustical substrate
of Fig. 1, in this section we study nonparaxial rays, propos-
ing a generalization to the concept of focal distancef39g, and
we construct the WDF using this definition.

A. Nonparaxial focal distance

Traditionally f57g, the focal distance fof a lens is defined
as the distance between the center of the lens and the point
where parallel rays converge after crossing the lens. Under
the paraxial approximation, the focal distance is independent
of the angle between the rays and optical axis. Indeed, this
condition implies that paraxial rays not only make a small
angle with the optical axis, but also that they are close to this
axis.

For a given nonparaxial ray incident over a sphere, the
optical axis is the parallel line to this axis that crosses the
center of the spheressee Fig. 2d. We define thefocal distance
as the distance between the sphere center and the point where
the incident ray cuts the optical axis. Thesphere planeis the
perpendicular plane to the optical axis that intercepts the
sphere center playing a role like a lens. Once we have an
optical axis assigned, a parallel ray to this axis cannot cross
the sphere; then, we say that the ray has an infinite focal
distance. We will consider the focal distance as positive if the
convergence point is on the back with respect to the sense of
advance of the ray.

A beam of parallel rays with the same distancer to the
optical axis has the same focal distancefsrd. This set of
incident rays constitutes the surface of a cylinder of radiusr,
the center of which coincides with the optical axis of the
sphere. If we consider a set of parallel rays between two
cylinders of radiusr andr +Dr, with Dr small, then all these
rays converge in the same point, at a distancefsrd. We can
describe this “tube” of rays as an intersection with the sphere
plane, which is the annular zone betweenr and r +Dr.

Let us consider an acoustical rayAB incident over a
sphere of radiusR parallel to the optical axisssee Fig. 2d.
This ray will suffer two refractions, one when it enters inB
and another when it goes out inC until it crosses the optical
axis in the focal pointF. The position in the optical axis of
the pointF depends on the position of the pointB, which can
be described through the angleui or through the distance to
the axisr i. For paraxial rays,r i <0 andF=Fsr id must be
independent ofr i. If we denote byur the refraction anglesin
agreement with Fig. 2d, the focal distance is given by

FIG. 2. An acoustical incident rayAB in a sphere of radiusR,
parallel to the optical axis, will suffer two refractions, one at the
sphere entrance inBsr id and another at the exit inCsr id, to cross
finally the optical axis in the focal pointFsr id.
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Fsr id = Rhcosf2ur − uisr idg + sinf2ur − uisr idg

3cotf2uisr id − 2urgj, s33d

whereur andui fulfill Snell’s refraction law:

sinui

sinur
=

ci

cr
=

hr

hi
, s34d

with ci and cr the sound velocities inside and outside the
sphere, respectively, andhi andhr the corresponding refrac-
tive indexes.

Equationss33d and s34d give for eachui a focal distance
F(uisr id) that lets us interpret the sphere as a superposition of
concentric rings of different radius. The one analyzed in Fig.
2 is the ring with incident angle in the sphereui and ui
+Dui. This ring behaves like a lens with a focal distance
F(uisr id) given by Eq.s33d.

B. Transformation of the Wigner distribution function for the
nonparaxial system

In Sec. II A we saw that the WDF of a signal crossing a
lens of focal distancef is transformed via Eq.s10d followed
by free propagation from the lens until the point where we
want to calculate the acoustical fieldfEq. s9dg f55,56g:

WglP
sq,pd = WgSq − p

Dz

k0
,pF1 −

Dz

f
G +

k0

f
qD . s35d

This result has two approximations: rays with small tilt with
respect to the optical axis and near to it—i.e., paraxial rays.

To obtain a better approximation than the one given by
Eq. s35d, let us consider a plane wave that propagates ini-
tially through the optical axisz—i.e., that satisfies the
paraxial conditions. Let us suppose that the wave insides
over a sphere of radiusR,R0 and that it is effectively a
plane within a cylinder of radiusR. The part of the wave that
it is not in the annular section betweenR and R0 does not
have contact inside over the sphere. The part of the wave
inside the cylinder of radiusR has a focal distance given by
Eq. s33d. Let us notice that when we decompose an incident
plane wave into rings, in agreement with the correspondent
rays, then the optical paths do not coincide, losing their co-
herence. Then we propose the next approximation to the
sphere problem:

WgSP
sq,pd =E

0

R0

drF 2pr

pR0
2G

3WgSq − p
Dz

k0
,pF1 −

Dz

FsrdG +
k0

Fsrd
qD ,

s36d

whereFsrd is given by Eq.s33d.
For the bidimensional square net of the liquid spherical

droplets immerse into a different liquid shown in Fig. 1; the
WDF will be given by fobtained in an analogous way as
Eq. s20dg

WTout
sq,pd =

2

R0
2E

0

R0

drr

3o
k

expH−
i

FsrdSDzp ·qk +
k0

2
fq − qkg2DJ

3o
l

expH i

FsrdSDzp ·ql +
k0

2
fq − qlg2DJ

3WgSq −
Dz

k0
p,F1 −

Dz

FsrdGp

+
k0

FsrdFq −
qk + ql

2
GD . s37d

The effect of the acoustical substrate over the signal will
produce, as an output WDF, simply the product of the input
WDF evaluated in a transformed phase space pointflast term
in Eq. s37dg by products of Gaussians(exphik0uq
−q ju2/ f2Fsrdgj) and interference fringes
(exphiDzp ·q j /Fsrdj) for each droplet summed over all the
spheres inside the substrate and integrated over all the space.
The termFsrd takes into account the nonparaxial character
of the medium.

C. Plane waves through a nonparaxial system

In the case of a plane-wave inputfEq. s12d, then the WDF
at the output of the acoustical substrate is obtained by sub-
stitution of Eq.s13d into Eq. s37d:

WTout
sq,pd =

2

R0
2E

0

R0

dro
k,l

rexpH− i
Dz

Fsrd
p · sqk − qldJ

3expH− i
k0

2Fsrd
sfq − qkg2 − fq − qlg2dJ

3dSF1 −
Dz

FsrdGp +
k0

FsrdFq −
qk + ql

2
GD ,

s38d

whereFsrd is given by Eq.s33d.
The main modification of the output WDF of an incoming

plane wave crossing a nonparaxial systemfEq. s38dg and a
paraxial onefEq. s21dg is that the focal distance has to be
modified via Eq.s33d and then integrated over all the radius
of each droplet, but we still have the typical interference
fringes characteristic of a periodic array.

V. CONCLUSIONS

In this paper the transmission of a signal through an
acoustical substrate consisting of a bidimensional crystal of
dropletssliquid spheresd embedded into another liquid was
theoretically analyzed. We consider liquids to deal only with
longitudinal waves. At a first approximation we solve the
paraxial problem considering an acoustical lens to model the
effect of each drop over the signal. Using the transfer func-
tion technique developed in Sec. II B, we found a general
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expression for the Wigner distribution function of the output
signal fEq. s20dg showing that the input WDF will be modi-
fied by products of Gaussians and interference fringes. As an
example, we consider the case of a plane-wave inputfEq.
s12dg obtaining from the WDFfEq. s21dg: the imagefEq.
s22dg, the diffraction patternfEq. s23dg, and even the output
signalfEq. s24dg. Taking the specific case of a square lattice
we demonstrate the traditional periodicity from a diffraction
pattern due to the spatial periodicity of the substrate. In the
case of a crystal with a small net parameter we can approxi-
mate the sums by integrals, letting us follow a diffraction

analysis similar to the one of Fresnel. To solve the non-
paraxial situation we make a generalization of the concept of
focal distancefEq. s33dg that allows us to interpret the sphere
as a superposition of concentric rings of different radius.
With this new definition we rewrite the Wigner distribution
function of the output signalfEq. s37dg; in particular, we
consider the case of an incoming plane wavefEq. s38dg. In
addition to the basic physics behind our results, which rep-
resent a simpler method for evaluation of the transmission of
an acoustical signal through a medium, they can be relevant
for producing novel acoustical and/or photonic materials.
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